
Experiment 4: The Fabry-Perot
Interferometer

The FabryPerot interferometer, simply referred to as the Fabry-Perot, is an impor-
tant application of multiple wave interference in optics. It consists of two partially
reflecting surfaces aligned with each other in such a way that many waves of light
derived from the same incident wave can interfere. The resulting interference patterns
may be used to analyze the spectral character of the incident beam.

4.1 The Fabry-Perot Equation

Consider a Fabry-Perot consisting of two parallel reflecting surfaces, separated by a
distance d as shown in Figure (4.1)1. Let n be the index of refraction of the medium
between the mirrors.

A plane monochromatic wave is incident on the FabryPerot plate at an angle φ.
Let E0A1 be the ray representing the direction of propagation of the incident wave.
At the first surface, this wave is divided into two plane waves, one reflected in the
direction of A1E ′1, and the other transmitted into the plate in the direction A1B1.
This latter wave is incident on the second surface at angle θ and is there divided into
two plane waves, one transmitted in the direction B1E1, the other reflected back at
the Fabry-Perot in the direction B1A2. This process of division of the wave remaining
inside the plate continues as shown in Figure (4.1). The total transmitted field can
be calculated by adding the contributions from each of the transmitted waves. To
carry out this sum we need to know their relative phases and amplitudes. These can
be calculated as follows.

We note that the phase of each transmitted wave differs from that of the preceding

1In its simplest form a Fabry-Perot could be a glass plate of fixed thickness with parallel polished
surfaces. This form of the Fabry-Perot is referred to as an etalon.
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Figure 4.1: A Fabry-Perot gives rise to multiple beam interference both in transmis-
sion and reflection.

wave by an amount corresponding to the difference in their paths. For example, the
optical paths of E2 and E1 differ by

nB1A2B2 −B1C1 =
2nd

cosφ
− 2d

cosφ
sinφ sin θ =

2nd

cosφ
− 2d

cosφ
sinφ(n sinφ)

=
2nd

cosφ

(
1− sin2 φ

)
= 2ndcosφ . (4.1)

This path difference corresponds to a phase difference

2δ = 2π × 2nd cos θ

λ
=

4πnd cos θ

λ
=
ω2nd cos θ

c
. (4.2)

We can now write down the relative amplitudes of transmitted waves. We shall
assume that both reflecting surfaces are identical and each surface, when it alone is
present, reflects a fraction R of the intensity of the light

I
R

Iinc
= R . (4.3)
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Then the ratios of reflected-to-incident and transmitted-to-incident electric field am-
plitudes at each interface are 2

Eref
Einc

= −
√
R , (4.4)

Etrans
Einc

=
√

1−R . (4.5)

We are now ready to calculate the transmission of the Fabry-Perot. We will write
down all the fields at the same instant of time t.

The field of a plane wave is of the form

E(t) = E0e
−iωt+ikz (4.6)

where k = 2πn/λ and z is the distance of propagation. Let us set z = 0 at point A1,
at the input face so that the incident wave can be written as

Einc = E0e
−iωt . (4.7)

The transmitted field amplitude across the first surface, according to Eq.(4.5),
is
√

1−R E0 and after crossing the second surface, it is
√

1−R ·
√

1−RE0 =
(1−R) E0. The transmitted field E1 at B1 is then

E1 = (1−R)E0e
−i(ωt−k A1B1) . (4.8)

where the distance A1B1 = d/ cosφ. Writing the constant phase k A1B1 = kd/ cosφ =
δ0 we can write E1 as

E1 = (1−R)E0e
−i(ωt−δ0) . (4.9)

To write down E2 we note that the wave transmitted across the first surface is
reflected twice inside the plate before being transmitted. Its amplitude will thus
gather amplitude factors

√
1−R (

√
R) (
√
R)
√

1−R = (1−R)R and an additional
phase factor ei2δ relative to E1,

E2 = (1−R)RE0e
−i(ωt−δ0)ei2δ (4.10)

2The minus sign takes into account the phase change at reflection from a denser medium.
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Similar considerations for other waves lead to the following expressions for the trans-
mitted waves

E1 = E0(1−R)e−i(ωt−δ0)

E2 = E0(1−R)Re−i(ωt−δ0)ei2δ

E3 = E0(1−R)R2e−i(ωt−δ0)ei4δ

E4 = E0(1−R)R3e−i(ωt−δ0)ei6δ

· · ·
EN = E0(1−R)RN−1e−i(ωt−δ0)ei(N−1)2δ

(4.11)

If the incident wave and the plates are wide enough and reflectivity is high there
will be a large number of contributions. For all practical purposes we can take the
number of transmitted waves to be infinitely large. The total transmitted field is then
obtained by summing the infinite geometric series 3

ET = E1 + E2 + E3 + · · ·
= E0(1−R)e−i(ωt−δ0)

(
1 +Rei2δ +R2ei4δ + · · ·

)
=
E0(1−R)e−i(ωt−δ0)

1−Rei2δ
. (4.12)

Since the (time averaged) intensity is proportional to the modulus squared of the
field amplitude, the transmitted intensity IT is given in terms of the incident wave
intensity I0 as

IT =
I0(1−R)2

1 +R2 − 2R cos 2δ
=

I0(1−R)2

1 +R2 − 2R+ 2R(1− cos 2δ)
(4.13)

=
I0(1−R)2

(1−R)2 + 4R sin2 δ
(4.14)

This can be written in the form

IT =
I0

1 + F sin2 δ
, (4.15)

where F is the coefficient of finesse

F =
4R

(1−R)2
, (4.16)

3An infinite geometric series 1 + x + x2 + x3 + · · · with x < 1 has the sum 1/(1− x).
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and the phase δ from Eq. (4.2) is given by

δ =
2πnd cos θ

λ
. (4.17)

From Eq. (4.15) we see that the transmitted intensity is a periodic function of δ that
varies between a maximum and a minimum as δ changes

[IT ]max = I0 , δ = pπ , p an integer (4.18)

[IT ]min =
I0

1 + F
, δ =

(
p+

1

2

)
π (4.19)
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Figure 4.2: Fabry-Perot transmission as a function of δ.

Figure (4.2) shows the transmitted intensity I
T

as a function of δ. Note that the
peaks get narrower as the mirror reflectivity (and therefore the coefficient of finesse
F ) increases. When peaks are very narrow, light can be transmitted only if the plate
separation d, refractive index n, and the wavelength λ satisfy the precise relation

δ =
2πnd cos θ

λ
= integer× π ≡ pπ , (4.20)

otherwise no light is transmitted. It is this property that permits the Fabry-Perot to
act as very narrow band-pass filter for fixed d.
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If the incident light contains many wavelengths of varying intensities, we can
analyze its spectrum (wavelength/frequency and intensity) by scanning the length d
of the Fabry-Perot because for a given separation d, the Fabry-Perot transmits only
the wavelength that satisfies Eq. (4.20). In this mode the Fabry-Perot is referred to
as a spectrum analyzer. Also note that as we scan the Fabry-Perot the transmission
pattern will repeat when δ increases by π.

Integer p in Eq. (4.20) is referred to as the order of the transmission peak (or the
fringe). Note that p has its maximum value for θ = 0. If the width of the pump beam
was very large, and all the rays of light were incident at the same angle, we would
not receive any light at angles other than those satisfying Eq. (4.20). In practice,
the incident light often has some divergence so that the relation (4.20) is satisfied for
other angles as well [see Figure (4.3)]. Consequently, in transmitted light we will see
concentric rings corresponding to rays entering the FabryPerot at angles θ1 and θ2, if
Eq. (4.20) is satisfied.

θ1
θ2

Side view Front view

Figure 4.3: The output of a Fabry-Perot illuminated by a diverging set of rays consists
of concentric rings.

4.2 FabryPerot Finesse

The peaks in Figure (4.2) are not infinitely sharp because the surfaces cannot be made
perfectly reflecting. This limits the instrument’s (spectral) resolution [Its ability to
tell two closely spaced wavelengths or frequencies apart]. A number F called “finesse”
describes the resolution of the instrument. Its significance is shown in Figure (4.4).
Note that successive transmission maxima are separated by ∆δ = π and the peak
width δc is defined be the full width at half maximum (FWHM). The finesse for
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the instrument is defined as the maximum number of resolvable peaks that can be
inserted in the interval π,

F =
π

δc
(4.21)

δ

pπ (p+1)π
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1 2 Io

IT

0

δc

π

Figure 4.4: Finesse is a measure of the sharpness of transmission peaks.

To determine δc, we look for the values of δ, for which the transmitted intensity
is reduced to half of its peak value [See Figure (4.5)]. Near a transmission peak of
integral order p, the points where the intensity falls to half of its maximum value are
at δ = pπ ± 1

2
δc. At these points we obtain from Eq. (4.15)

1

2
I0 =

I0
1 + F sin2(1

2
δc)

. (4.22)

This equation easily gives

sin

(
1

2
δc

)
=

1√
F

=
1−R
2
√
R

(4.23)

In most cases of practical interest, the width of the peak is small compared to the
free spectral range, δc � π. This is the case when F is large. We can then use the
approximation sin(1

2
δc) ≈ 1

2
δc to obtain

δc =
2√
F

=
(1−R)√
R

. (4.24)
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Figure 4.5: Peak width δc is defined to be the full width at half maximum.

From our definition of finesse (4.20) then we find

F =
π

δc
=

π
√
R

1−R
≡=

π
√
F

2
. (4.25)

As an example, consider a Fabry-Perot consisting of two mirrors with R = 0.99
separated by an air gap (n = 1) of 2.500000 cm. The source of light is a hypothetical
laser emitting light of wavelength 500.0000 nm, incident normally (θ = 0) on the
mirrors. Then from the expression for δ (Eq.(4.17)) we find

δ = 10, 000 π (4.26)

The transmission should be maximum under this condition.
What happens if we gradually increase the air gap? To answer this,

suppose we begin at a transmission peak at θ = 0. Then the wavelength λ of maximum
transmission and Fabry-Perot separation d satisfy the condition

δ ≡ 2πd

λ
= pπ ⇒ λ =

2d

p
(4.27)

where p is an integer. As we vary the Fabry-Perot separation, the wavelength of
maximum transmission will change. Thus if the Fabry-Perot separation changes by
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an amount ∆d, the wavelength transmitted will be (fixed p)

λ+ δλ =
2(d+ δd)

p
. (4.28)

If we continue to increase the separation, then at some point, when the separation
has increased by an amount ∆d, the original wavelength λ will be transmitted again
but this time satisfying the relation

λ =
2(d+ ∆d)

p+ 1
. (4.29)

Note that this will be in addition to another wavelength λ+ ∆λ satisfying

λ′ ≡ λ+ ∆λ =
2(d+ ∆d)

p
. (4.30)

Equations (4.29) and (4.30) imply that when the separation can simultaneously fit
p + 1 half wavelengths of λ and p half wavelengths of λ + ∆λ both wavelengths
will be transmitted. In this case we would not be able to tell if the Fabry-Perot is
transmitting a new wavelength or the original one. So how much can we scan before
this confusion or overlap of orders arises? The answer from Eqs. (4.30) is

∆d =
λ

2
. (4.31)

Using this result in Eq. (4.30) and substituting value of p from Eq. (4.25) [or (4.29)]4

we obtain the range of wavelengths that can be freely scanned without overlapping
of orders is

∆λ =
λ2

2d
(4.32)

Scanning beyond this point will simply repeat the pattern already encountered and is
of little interest to us. Wavelength scanning range ∆λ free of any repetition is called
the free spectral range (FSR) of the Fabry-Perot. This FSR in terms of scanned
wavelength corresponds to the free spectral range in terms of phase, δFSR = π.
Exercise: Compute FSR in terms of frequency ν = c/λ.

In our numerical example, the free spectral range turns out to be 0.005 nm, which
tells us that we are capable of looking very closely into the spectrum of the laser in

4It does not matter which equation is used as long as p is large.
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Figure 4.6: Transmitted intensity as a function of wavelength λ.

the range 500.0000 ± 0.0050 nm. This is particularly helpful in the event that the
output of the laser actually consists of several closely spaced spectral lines.

According to Eq. (4.25), with 97% reflectivity mirrors, a finesse of 100 can ob-
tained. This means that we can ultimately resolve two spectral lines separated by
one-hundredth of the Free Spectral Range, or by 0.00005 nm, indeed a small separa-
tion. By contrast, the resolution of the best spectrometers available today can only
reach .01 nm.

4.3 Applications

Fabry-Perots are particularly useful in the field of spectroscopy whenever high res-
olution is needed. Other applications include astronomy and intracavity laser-line
narrowing. A traditional grating spectrometer is useful when the needed resolution is
of the order of 0.01 nm while the Fabry-Perot finds application in the 0.1 nm to 10−6

nm range. To go below 10−6 nm, a third technique called “heterodyne detection” is
used. This involves beating an unknown frequency with a reference light wave and
measuring the beat frequency.
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Part 1

The outcome of this experiment will be a transmission curve I
T
(δ) displayed on an

oscilloscope. To understand the experimental procedure described in Part 2, let us
first perform some calculations.

The reflectivity of the mirrors is given by the manufacturer to be 97.5%. As-
suming that your set up is perfect, plot the curve I

T
/I0 [See Eq. (4.15)] for this

particular reflectivity and calculate the finesse of the Fabry-Perot.

You will notice that the plotted peaks are quite sharp, but in the experiment they
will be somewhat broader. This is due to imperfections in the experimental set up.
We shall consider a few of these.

In the discussion of the theory, we assumed that the detection system was capable
of looking at a single point at the output of the Fabry-Perot. In practice, the detector
looks at a small area of the output plane and this can profoundly affect our results. To
see this, let us assume that our experimental set up consists of a laser, a Fabry-Perot,
a pinhole, and a detector as shown in Figure (4.7)

Fabry-Perot output pinhole detector

D w

 d

Figure 4.7: Detector aperture must not look at more than one fringe (transmission
maximum) at a time. This can be accomplished by placing a pin hole of suitable size
in front of the detector.

We shall assume that the laser behaves as a point source. The output of the Fabry-
Perot then consists of concentric rings corresponding to the transmission peaks [Fig.
(4.3)]. Figure (4.7) shows a side view of the output. The distance D is the separation
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of fringes5. The pinhole in front of the detector is used to limit the effective size of the
detector so that the detector monitors only one fringe at a time. How small should
we make the pinhole? Well, it depends on the resolution we want to achieve. It is
important to understand this that even if the Fabry-Perot is able to produce distinct
fringes in its output for two closely spaced wavelengths, we will not be able to resolve
them if the detector cannot separately view these fringes one at a time. To specify
the detector performance we introduce the concept of pinhole finesseFp, defined as
the number of times the pinhole width w can fit into D,

Fp =
D

w
. (4.33)

The central fringe (θ = 0) obeys the relation

2d = pλ (4.34)

for some p. Similarly, the first fringe away from the optical axis satisfies6

2d cos θ1 = (p− 1)λ . (4.35)

From Eqs. (4.34) and (4.35) we find that the first fringe outward from the center is
located at an angle θ1 given by

cos θ1 = 1− λ

2d
. (4.36)

Since the angle θ is usually small we can use cos θ ≈ 1 − θ2/2 and find the angular
position of the first fringe from the center

θ1 =

√
λ

d
. (4.37)

Now assuming that d� `, the fringe sepration D is given by

D ≈ ` sin θ1 ≈ `θ1 = `

√
λ

d
. (4.38)

Finally, from our definition (4.33), the pinhole finesse is expressed as

Fp =
`

w

√
λ

d
. (4.39)

5The spacing between the fringes in a Fabry-Perot decreases as we move away from the optical
axis.

6The order p decreases as we move away from the optical axis.
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• As a general rule, the pinhole finesse should be at least three times greater than
the Fabry-Perot finesse. Using this rule, and assuming that ` = 1 m, d = 6
cm and λ = 632.8 nm, calculate the largest diameter pinhole allowed for our
system.

We should also point out in this discussion that the lack of flatness of the mirrors
also affects the overall finesse of the system. (For example, if the plate flatness
is λ/200, then the Finesse is limited to 100.) This is simply because the distance
between the mirrors cannot be well defined when surface “errors” are present.

Finally, we mention that the HeliumNeon laser that we will use for our experiment
emits light of wavelength 632.8 nm. A closer look with a FabryPerot will reveal that
the spectrum actually consists of three equidistant lines, as shown in Figure (4.6).
They are referred to as the (longitudinal) modes of the laser. Just as the transmission
peaks of a FabryPerot, these modes are separated in wavelength by λ2/2L, where L
is the separation of mirrors inside the laser.

Part 2

The set up used in this experiment is similar to that described in Part 1. If the
diameter of the pinhole available is significantly larger than the one you calculated in
Part 1, you can compensate for this by increasing the distance between the detector
and FabryPerot [See Figure (4.8)]

PZT
Driver

Steering
mirror

Beam
expander

Fabry-Perot Detector

From laser

Oscilloscope
Voltage
ramp

Trigger

Filter

Figure 4.8: An outline of the experimental setup.
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One of the FabryPerot mirrors is held in place by a piezoelectric transducer (PZT).
By applying a voltage across the PZT we can change the length of the Fabry-Perot.
The PZT driver supplies a time varying repetitive voltage in the form of a sawtooth or
a triangular wave. The F-P length, therefore, increases linearly until it reaches the end
of the ramp and then decreases linearly to its original length. This scanning sequence
is repeated. A trigger pulse sent to the oscilloscope synchronizes the horizontal scan of
the oscilloscope with the FabryPerot scan. A portion of the transmitted light passes
through the pinhole and falls on the detector which generates a voltage proportional
to the incident intensity. The detector output is displayed on the oscilloscope. The
oscilloscope display is then a plot of intensity as a function of mirror separation.

You can calibrate the oscilloscope horizontal sweep in terms of frequency as fol-
lows. Increase the scanning voltage slowly until you see the transmitted mode pattern
repeated in the output. The horizontal distance between two points on the oscillo-
scope trace that you see repeated equals the free-spectral range of the Fabry-Perot.

Before assembling the apparatus, make a preliminary alignment of the FabryPerot
mirrors. Set the mirror separation to be about 3 cm. Arrange the laser and steering
mirror in such a way that the beam hits the input mirror of the FabryPerot and
travels back to the laser and just misses it. This procedure insures that the beam
is perpendicular to the first mirror and no reflection goes back to the laser. Next,
use the micrometric adjustments on the output mirror to align it until all multiple
reflections at the output are superimposed.

Assemble the apparatus as shown in Figure (4.8). Ask your lab instructor for help
if you do not know how to operate the equipment.

• Use the oscilloscope to measure the finesse of your Fabry-Perot. If the value
obtained is low, your system is not correctly aligned. Realign and report the
highest value obtained for the finesse. How does it compare to the theoreti-
cal value? How does the finesse change when the input beam is not properly
aligned? Explain.

• Calculate the free spectral range of the Fabry-Perot. Use this information to
measure the mode separation of the laser. From this compute the separation of
the mirrors inside the laser? Is this a reasonable value for your laser? Calculate
the ratio of the laser mode separation to the free spectral range of the Fabry-
Perot.

• Change the FabryPerot mirror separation to 6 cm. Measure the finesse again.
Do you expect it to be different from your earlier measurement? What is the
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expected ratio of the laser mode separation to the free spectral range of the
Fabry-Perot? How does this compare with the measured value?
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Abstract
The resolution concept in connection with the Fabry–Perot interferometer is
difficult to understand for undergraduate students enrolled in physical optics
courses. The resolution criterion proposed in textbooks for distinguishing
equal intensity maxima and the deduction of the resolving power equation
is formal and non-intuitive. In this paper, we study the practical meaning
of the resolution criterion and resolution power using a computer simulation
of a Fabry–Perot interferometer. The light source in the program has two
monochromatic components, the wavelength difference being tunable by the
user. The student can also adjust other physical parameters so as to obtain
different simulation results. By analysing the images and graphics of the
simulation, the resolving power concept becomes intuitive and understandable.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The multiple beam interferometer was proposed by Charles Fabry (1867–1945) and Alfred
Perot (1863–1925) in 1899. The multiple beam interferences generated between two glass
plates, internally covered by a highly reflective film and illuminated by an extended quasi-
monochromatic source, produce an intensity distribution consisting of concentric circles. It
can be demonstrated, using the mathematical law that describes the intensity profile of the
interference pattern, that a given wavelength generates a specific set of maxima. Consequently,
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circles resulting from different wavelengths can be discriminated. This capability makes the
Fabry–Perot interferometer a valuable tool in high-resolution spectroscopy.

The spectral resolving power |λ/�λ| quantifies the capability of an interferometer to
resolve two close wavelengths. It is defined as the ratio of the wavelength of the source λ

to the minimum difference of wavelengths �λ that generates two circle series that can be
discriminated. To calculate the resolving power formula, it is necessary to know the law that
describes the interference pattern and set a separation criterion to decide when the circles are
viewed separately [1, 2].

Our experience in teaching optics to second year university physics students shows that
the explanation of the resolution concept is barely understood. Very often, students merely
retain the formula and are unable to grasp the underlying concepts. Because of this reason,
we propose to use a Java applet to show how the Fabry–Perot interferometer works. These
simulations make possible to modify the parameters involved in the physical problem, so the
effect of the changes in the variables is visualized automatically.

As the mathematical description of the interferometer is relatively simple, the
implementation of a computer simulation of this device is a straightforward task.
Consequently, it is possible to find in the Internet multiple computer implementations of
the interferometer (see, for instance, [3, 4]). Nevertheless, these Fabry–Perot applets do not
allow you to analyse problems related with resolving power because they are not able to deal
with more than one wavelength. For this reason, a simple application to emphasize this topic
[5] has been developed.

In section 2, we explain how to calculate the spectral resolving power in a Fabry–Perot
spectrometer and in section 3, we describe a visual methodology to determine the resolving
power from the data generated by the applet. We compare visual results with those obtained
directly from the formula presented in section 2.

2. Fabry–Perot resolution

2.1. How a Fabry–Perot interferometer works

The Fabry–Perot interferometer consists of two glass plates with parallel plane surfaces,
separated at a distance d. The media between the glass plates is air (n = 1). If a
monochromatic wave impinges upon the plate at angle ε, multiple reflections are generated.
If the inner surfaces are covered by a highly reflective film, the reflections in the glass plates
are negligible. Therefore, only the interferences produced by the multiple beams in the air
plate are observable. The intensity of the interference patterns is described by the following
expression:

I = a2

1 + 4r2

(1−r2)2 sin2
(

δ
2

) , (1)

where a is the amplitude of the incident wave, r is the reflection coefficient of the coating film
and δ is the phase difference between two consecutive waves. Let � be the optical length
difference. In this case, the optical length is � = 2d cos ε. As usual, the optical length and
phase difference are related by δ = 2π

λ
�.

The intensity depends on the thickness d, the reflection coefficient r, the wavelength λ, the
intensity a2 of the incident plane wave and the incidence angle ε. If the light comes from an
extended source from all possible directions ε, and taking into account that the geometry of the
light distribution only depends on ε, the intensity pattern should exhibit rotational symmetry.
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The intensity maximum (Imax = a2) is obtained if the following condition is verified:

sin2 δ

2
= 0 thus δ = 2mπ and � = 2d cos ε = mλ, (2)

where m = 0,±1,±2, . . . . The intensity profile therefore exhibits a sequence of maxima and
minima and, consequently, the interference pattern is characterized by a set of light circles.
The index m in the previous equation labels each circle. For instance, the maximum m value
is found when ε tends to zero. In particular, if a maximum is found when the incidence angle
is zero (ε = 0), then m = 2d/λ.

2.2. The Rayleigh criterion

As we have explained before, the intensity pattern is a function of the wavelength. Each
wavelength coming from a light source generates a set of light circles. The resolving power
is a measure of the ability to discriminate between sets of circles generated by different
wavelengths. Moreover, it is also necessary to define mathematically a separation criterion
between two very close maxima. This criterion represents one’s visual ability to distinguish
two concentric circles.

Different resolution criteria are described in physical optics textbooks. Several authors
such as Born and Wolf [1] and Hecht [2] use Rayleigh’s criterion [6]. It was first introduced
by Lord Rayleigh in 1879 to determine whether two diffraction spots can be distinguished or
not. The criterion states that two intensity maxima are separated if the maximum value of the
first spot is superimposed on the first minimum of the second spot.

Rayleigh’s resolution limit seems to be rather arbitrary and is based on resolving
capabilities of the human eye. This limit was set to guarantee a clear distinction between
two close spots using the eye. When visual inspection is replaced by detectors, other less
restrictive criteria can be used. For instance, Sparrow’s criterion states that two diffraction
spots are just distinguished when the minimum between the two intensity maxima of the
composite intensity is undetectable [7].

Rayleigh’s criterion cannot be directly applied to the Fabry–Perot intensity profile because
of the slow decrease of these values. Consequently, the minimum is located far from
the maximum. To avoid this problem, an alternative definition is proposed: let Iλ(x) and
Iλ+�λ(x) equal the intensity profiles along a diameter, generated by wavelengths λ and λ + �λ

respectively [1]. Two maxima are resolved if the minimum value of Iλ(x) + Iλ+�λ(x) verifies
the following condition:

min{Iλ(x) + Iλ+�λ(x)} = 0.81 max{Iλ(x)}. (3)

When the Rayleigh criterion is applied to diffraction in a slit, we obtain the condition
shown in equation (3).

2.3. The Taylor criterion

Other authors of optical textbooks (Klein–Furtak [8], Pérez [9], Françón [10], Fowles [11]) use
the full-width half-maximum criterion (FWHM). This states that the separation of the maxima
is equal to the half-maximum width. This criterion is also known as the Taylor criterion
(TC). In practice, both criteria give very similar results. For instance, Hecht [2] introduces
the Rayleigh criterion but, after an approximation, uses the TC. We also use TC in this paper
because it is easier to handle the mathematics involved.

Figure 1 shows an example of the use of this criterion for different values of the reflective
coefficient r. In figure 1(a) (r = 0.65), the intensity maxima profiles are not separated
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Figure 1. Taylor criterion as a function of the reflective coefficient. The figure shows the intensity
profile (equation (1)) for two close wavelenghts (blue and green curves). The composite intensity
is shown in red. (a) r = 0.65, the maxima cannot be discriminated and (b) r = 0.82, the maxima
fulfils the criterion.

enough to be visually differentiated whereas in figure 1(b) (r = 0.82), the maxima fulfil the
requirements of the TC; thus, the interference fringes are considered separated.

Using equations (1) and (2) (intensity and position of maxima), and applying the TC, a
formula that gives the minimum wavelength difference (�λ) for the fringes produced by two
monochromatic sources to be separated can be deduced as

SRP =
∣∣∣∣ λ

�λ

∣∣∣∣ = πmr

1 − r2
. (4)

This equation is called the spectral resolving power (SRP) of the interferometer. The
derivation of this formula is shown in the appendix.

For a specific wavelength, the SRP depends on the maximum order m and the reflective
coefficient r. The SRP gives higher values for fringes near the centre of the interferometric
pattern and for values of r tending to 1, which means that closer wavelengths can be
discriminated.



The concept of resolving power in the Fabry–Perot interferometer 1115

3. Procedure

We propose to analyse the meaning of the SRP concept, using the applet. First, we study the
dependence of SRP with coefficient r, for a fixed m. Initially, we set the source wavelength
(λ1 = 500.1 nm) and the thickness (d = 7.5 mm). From equation (2) we get m = 29993. We
use these values just as an example.

Taking into account that the best resolving conditions can be found for central fringes
(maximum m values), we adjust the screen size to display only the inner circle of the
interferometric pattern (focal length 1 = 500 mm, focal length 2 = 500 mm, source size =
10 mm, screen size = 5 mm.) If, for instance, we want to discriminate a second wavelength
λ2 = 500.103 nm, then �λ = 0.003 nm. These are arbitrary values and have been selected to
show the ability of the Fabry–Perot interferometer to distinguish two really close wavelengths.

Now, we increase the value of r starting from r = 0.6. As shown in figure 2(a), the circles
generated by λ1 and λ2 cannot be separated visually. In practice, two fringes are distinguished
according to Rayleigh’s criterion if they can be clearly discriminated by the observer’s eye.
When the values of r reach the interval 0.75 � r � 0.78, the fringes appear clearly separated
(see figure 2(b)). Figure 2(c) displays the intensity profile. The plot shows that the separation
of the maxima is equal to the half-maximum width when r = 0.76.

Now, we can verify this result with the use of the equation predicted by theory
(equation (4)). Setting the variables λ = 500.1 nm, � = 0.003 nm and m = 29993,
and isolating r, we obtain the following equation:

r2 +

(
πm

∣∣∣∣�λ

λ

∣∣∣∣
)

r − 1 = 0. (5)

Solving equation (5), we get a value of r = 0.757, very similar to that obtained visually
using the applet.

We suggest a second exercise to show how the SRP varies with the thickness d. Here, the
variables are set to the following values: focal length 1 = 100 mm, focal length 2 = 1000 mm,
source size = 5 mm, screen size = 35 mm, r = 0.7. The wavelengths selected are
λ1 = 429.248 nm and λ2 = 429.286 nm, which correspond to two equal intensity lines of
the emission spectrum of sodium (Na II) (see, for instance, [12]). We start from d = 0.3 mm,
and the thickness increases until 0.7. Figure 3 shows the interferogram at d = 0.4, 0.45,
0.5, 0.55, 0.6 and 0.65 mm. The inner circles appear to be distinguished at d = 0.55 mm
or d = 0.6 mm. Again, numerical verification agrees with the visual inspection of simulated
interferograms because the limit value of d that verifies the Rayleigh criterion is d = 0.56 mm.

4. Concluding remarks

The most common physical optics textbooks analyse the spectral resolution power concept
in interferometry from the point of view of Rayleigh’s resolution criterion. The use of this
criterion is appropriate when qualitative observation of some physical phenomena is carried
out using the human visual system. Nowadays, undergraduate experiments often include data
acquisition systems, so the use of Rayleigh criterion seems to be rather arbitrary and the
students find it confusing to apply.

Computer simulations of interferometric devices allow the user to handle the variables
involved in the physical problem. A digital implementation of the Fabry–Perot interferometer
can be a helpful tool to analyse the connection between spatial resolution power, resolution
criteria and their mathematical formalism. In our opinion, the use of such programs, combined
with a suitable methodology, helps students to understand these concepts better.
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(a)

(b) (c)

Figure 2. Results: (a) program window showing two unresolved fringes (r = 0.6) and (b) limit of
visual resolution (r = 0.76). The two circles are clearly distinguishable. (c) Intensity profile of (b).
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Figure 3. Interferograms at d = 0.4, 0.45, 0.5, 0.55, 0.6. Note that for a fixed m, the radius of the
fringes decreases when the thickness increases.

P M Q

I=1

I=0.5

ε

Figure 4. Full width at half-maxima criterion.

In this paper, we have suggested two exercises to study the dependence of the spatial
resolution power with the reflectance r and the thickness d in a Fabry–Perot interferometer.
We suggest these exercises as classroom activities or as homework.

The analysis of the results obtained shows the practical meaning of the Rayleigh criterion.
Far from being an arbitrary condition, Rayleigh’s formula truly captures, in a mathematical
form, the resolution limit of the human visual system. The applet clearly shows that the two
fringes can be distinguished by the eye when the Rayleigh criterion is fulfilled, which helps
students to appreciate the resolving power of the Fabry–Perot interferometer. Moreover, the
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students enjoy this approach because they understand better and more easily the underlying
concepts.
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Appendix: Deduction of the spectral resolving power formula

The intensity of the interference patterns is described by

I = a2

1 + 4r2

(1−r2)2 sin2
(

δ
2

) , (A.1)

where

δ = 2π

λ
� = 2π

λ
2d cos ε. (A.2)

The maximum of intensity (Imax = a2) is obtained if the following condition is verified:

sin2 δ

2
= 0, δ = 2mπ then � = 2d cos ε = mλ for m = 0,±1,±2, . . . . (A.3)

Now, we want to determine the minimum �λ that generates two fringes separated to the
extent that they fulfil the Taylor criterion (figure 4).

Let �δ be the change in a phase associated with the change in the wavelength �λ:
δQ = δP + �δ. As P corresponds to a maximum, δP = 2mπ . Taking into account that the
phase variation is linear for small changes in the phase, then

δM = δP + �δ/2 = 2mπ + �δ/2. (A.4)

The resolving criterion states that IM = IP /2 = a2/2, and introducing the condition in
equation (A.1),

sin2 δM

2
= (1 − r2)2

4r2
then sin

�δ

4
= 1 − r2

2r
(A.5)

and approximating sin(�δ/4) with �δ/4, then

�δ

2
= 1 − r2

r
. (A.6)

Differentiating equation (A.2),

�δ = −2π

λ2
2d cos ε�λ, (A.7)

and using the relation 2d cos ε = mλ results in �δ = − 2π
λ2 m�λ. Replacing �δ as a function

of the reflective coefficient (equation (A.6)), we get the formula of the spectral resolving
power: ∣∣∣∣ λ

�λ

∣∣∣∣ = πmr

1 − r2
. (A.8)
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